Blendy
  • Overview
  • Key Concepts
  • Participant Roles
  • Roadmap
  • 🧩 BLENDY MODULES
    • Moon Module
      • Key Components
      • Option Strategies
      • Risk Management and Hedging
      • Examples
  • Throttle Module
    • Throttle Module Explained
    • Formulas and Calculations
    • Example
  • Liquidation Process
  • 🔒 Security
    • Audit
    • Bug Bounty
  • BRAND ASSETS
    • Brand Asset Kit
Powered by GitBook
On this page
  • Throttle function
  • Borrowing and supply velocities
  • Rate of change of these velocities
  • Borrow Rate Calculations
  • Total pool at risk ratio
  • Rate Adjustment Formula
  1. Throttle Module

Formulas and Calculations

The Throttle Module relies on various formulas and calculations to achieve its functionality

PreviousThrottle Module ExplainedNextExample

Last updated 1 year ago

Throttle function

t(r,s,m,(LD,ΔVbΔVs))→(ΔB,H)<(x,y)t(r, s, m, \left(\frac{L}{D}, \frac{\Delta V_b}{\Delta V_s}\right)) \rightarrow (\Delta B, H) < (x, y) t(r,s,m,(DL​,ΔVs​ΔVb​​))→(ΔB,H)<(x,y)

Rule for comparing pairs is as following:

∀a,b,c,d∈Q, (a,b)<(c,d)  ⟺  (a<b and c<d)\forall a, b, c, d \in \mathbb{Q},\ (a, b) < (c, d) \iff (a < b \text{ and } c < d) ∀a,b,c,d∈Q, (a,b)<(c,d)⟺(a<b and c<d)

Where:

  • rrr: Borrowing rate

  • sss: Throttle surcharge

  • mmm: Multiplier on borrowing amount

  • LD\frac{L}{D}DL​: Potential liquidation amount at risk over market depth

  • ΔVbΔVs\frac{ΔV_b}{ΔV_s}ΔVs​ΔVb​​: Rate of increase in borrowing velocity versus supply velocity

  • (ΔB,H)(ΔB,H) (ΔB,H): Output tuple representing delta in borrowing/supply and market health factor

  • (x,y)(x,y)(x,y): Threshold values for output control

  • Q\mathbb{Q}Q is set of all rational numbers

This means that:

  1. Throttle Function is calculated

  2. Output values are compared with Threshold Values

  3. Further actions are based on the result of comparison


Borrowing and supply velocities


Rate of change of these velocities


Borrow Rate Calculations


Total pool at risk ratio

If sudden 50% downside risk, then:

Where:


Rate Adjustment Formula

Borrowing velocity, Vb=Net increase in borrowing (USD)Wallets transacted per epoch\text{Borrowing velocity, } V_b = \frac{\text{Net increase in borrowing (USD)}}{\text{Wallets transacted per epoch}} Borrowing velocity, Vb​=Wallets transacted per epochNet increase in borrowing (USD)​
Supply velocity, Vs=Net increase in supply (USD)Wallets transacted per epoch\text{Supply velocity, } V_s = \frac{\text{Net increase in supply (USD)}}{\text{Wallets transacted per epoch}} Supply velocity, Vs​=Wallets transacted per epochNet increase in supply (USD)​
ΔB=Rate of change of Vb,ΔS=Rate of change of Vs\Delta B = \text{Rate of change of } V_b, \quad \Delta S = \text{Rate of change of } V_s ΔB=Rate of change of Vb​,ΔS=Rate of change of Vs​
If ΔBΔS≥Critical level⇒rnew=m⋅r+s\text{If } \frac{\Delta B}{\Delta S} \geq \text{Critical level} \Rightarrow r_{\text{new}} = m \cdot r + s If ΔSΔB​≥Critical level⇒rnew​=m⋅r+s

Where rnewr_{new}rnew​ is a new borrow rate after applying multiplier and surcharge

if Pat riskPtotal<x⇒ no action neededif x≤Pat riskPtotal<y⇒adjust borrow/supply rates gradually+emit warningsif Pat riskPtotal≥y⇒adjust rates immediately and liquidateif\ \frac{P_{\text{at risk}}}{P_{\text{total}}} \lt x \Rightarrow \ no \ action \ needed \newline if \ x\leq \frac{P_{\text{at risk}}}{P_{\text{total}}} \lt y \Rightarrow adjust\ borrow/supply\ rates\ gradually+emit\ warnings \newline if\ \frac{P_{\text{at risk}}}{P_{\text{total}}} \geq y \Rightarrow adjust\ rates\ immediately\ and\ liquidate if Ptotal​Pat risk​​<x⇒ no action neededif x≤Ptotal​Pat risk​​<y⇒adjust borrow/supply rates gradually+emit warningsif Ptotal​Pat risk​​≥y⇒adjust rates immediately and liquidate

xxx - primary threshold

yyy - secondary threshold

Pat−riskP_{at-risk}Pat−risk​ - pool value at risk

PtotalP_{total}Ptotal​ - total value of pool

x<yx < yx<y

Adjusted borrow rate=Base Borrow Rate×(1+Multiplier×(ΔSΔB−CR))+ SurchargeAdjusted\ borrow\ rate = Base\ Borrow\ Rate×(1+Multiplier×(\frac{ΔS}{ΔB}−CR))\\ + \ SurchargeAdjusted borrow rate=Base Borrow Rate×(1+Multiplier×(ΔBΔS​−CR))+ Surcharge