Blendy
  • Overview
  • Key Concepts
  • Participant Roles
  • Roadmap
  • 🧩 BLENDY MODULES
    • Moon Module
      • Key Components
      • Option Strategies
      • Risk Management and Hedging
      • Examples
  • Throttle Module
    • Throttle Module Explained
    • Formulas and Calculations
    • Example
  • Liquidation Process
  • 🔒 Security
    • Audit
    • Bug Bounty
  • BRAND ASSETS
    • Brand Asset Kit
Powered by GitBook
On this page
  • Throttle function
  • Borrowing and supply velocities
  • Rate of change of these velocities
  • Borrow Rate Calculations
  • Total pool at risk ratio
  • Rate Adjustment Formula
  1. Throttle Module

Formulas and Calculations

The Throttle Module relies on various formulas and calculations to achieve its functionality

Throttle function

t(r,s,m,(LD,ΔVbΔVs))→(ΔB,H)<(x,y)t(r, s, m, \left(\frac{L}{D}, \frac{\Delta V_b}{\Delta V_s}\right)) \rightarrow (\Delta B, H) < (x, y) t(r,s,m,(DL​,ΔVs​ΔVb​​))→(ΔB,H)<(x,y)

Rule for comparing pairs is as following:

∀a,b,c,d∈Q, (a,b)<(c,d)  ⟺  (a<b and c<d)\forall a, b, c, d \in \mathbb{Q},\ (a, b) < (c, d) \iff (a < b \text{ and } c < d) ∀a,b,c,d∈Q, (a,b)<(c,d)⟺(a<b and c<d)

Where:

  • rrr: Borrowing rate

  • sss: Throttle surcharge

  • mmm: Multiplier on borrowing amount

  • LD\frac{L}{D}DL​: Potential liquidation amount at risk over market depth

  • ΔVbΔVs\frac{ΔV_b}{ΔV_s}ΔVs​ΔVb​​: Rate of increase in borrowing velocity versus supply velocity

  • (ΔB,H)(ΔB,H) (ΔB,H): Output tuple representing delta in borrowing/supply and market health factor

  • (x,y)(x,y)(x,y): Threshold values for output control

  • Q\mathbb{Q}Q is set of all rational numbers

This means that:

  1. Throttle Function is calculated

  2. Output values are compared with Threshold Values

  3. Further actions are based on the result of comparison


Borrowing and supply velocities

Borrowing velocity, Vb=Net increase in borrowing (USD)Wallets transacted per epoch\text{Borrowing velocity, } V_b = \frac{\text{Net increase in borrowing (USD)}}{\text{Wallets transacted per epoch}} Borrowing velocity, Vb​=Wallets transacted per epochNet increase in borrowing (USD)​
Supply velocity, Vs=Net increase in supply (USD)Wallets transacted per epoch\text{Supply velocity, } V_s = \frac{\text{Net increase in supply (USD)}}{\text{Wallets transacted per epoch}} Supply velocity, Vs​=Wallets transacted per epochNet increase in supply (USD)​

Rate of change of these velocities

ΔB=Rate of change of Vb,ΔS=Rate of change of Vs\Delta B = \text{Rate of change of } V_b, \quad \Delta S = \text{Rate of change of } V_s ΔB=Rate of change of Vb​,ΔS=Rate of change of Vs​

Borrow Rate Calculations

If ΔBΔS≥Critical level⇒rnew=m⋅r+s\text{If } \frac{\Delta B}{\Delta S} \geq \text{Critical level} \Rightarrow r_{\text{new}} = m \cdot r + s If ΔSΔB​≥Critical level⇒rnew​=m⋅r+s

Where rnewr_{new}rnew​ is a new borrow rate after applying multiplier and surcharge


Total pool at risk ratio

If sudden 50% downside risk, then:

if Pat riskPtotal<x⇒ no action neededif x≤Pat riskPtotal<y⇒adjust borrow/supply rates gradually+emit warningsif Pat riskPtotal≥y⇒adjust rates immediately and liquidateif\ \frac{P_{\text{at risk}}}{P_{\text{total}}} \lt x \Rightarrow \ no \ action \ needed \newline if \ x\leq \frac{P_{\text{at risk}}}{P_{\text{total}}} \lt y \Rightarrow adjust\ borrow/supply\ rates\ gradually+emit\ warnings \newline if\ \frac{P_{\text{at risk}}}{P_{\text{total}}} \geq y \Rightarrow adjust\ rates\ immediately\ and\ liquidate if Ptotal​Pat risk​​<x⇒ no action neededif x≤Ptotal​Pat risk​​<y⇒adjust borrow/supply rates gradually+emit warningsif Ptotal​Pat risk​​≥y⇒adjust rates immediately and liquidate

Where:

xxx - primary threshold

yyy - secondary threshold

Pat−riskP_{at-risk}Pat−risk​ - pool value at risk

PtotalP_{total}Ptotal​ - total value of pool

x<yx < yx<y


Rate Adjustment Formula

Adjusted borrow rate=Base Borrow Rate×(1+Multiplier×(ΔSΔB−CR))+ SurchargeAdjusted\ borrow\ rate = Base\ Borrow\ Rate×(1+Multiplier×(\frac{ΔS}{ΔB}−CR))\\ + \ SurchargeAdjusted borrow rate=Base Borrow Rate×(1+Multiplier×(ΔBΔS​−CR))+ Surcharge
PreviousThrottle Module ExplainedNextExample

Last updated 12 months ago